

django-auditlog documentation

django-auditlog (Auditlog) is a reusable app for Django that makes logging object changes a breeze. Auditlog tries to
use as much as Python and Django’s built in functionality to keep the list of dependencies as short as possible. Also,
Auditlog aims to be fast and simple to use.

Auditlog is created out of the need for a simple Django app that logs changes to models along with the user who made the
changes (later referred to as actor). Existing solutions seemed to offer a type of version control, which was found
excessive and expensive in terms of database storage and performance.

The core idea of Auditlog is similar to the log from Django’s admin. However, Auditlog is much more flexible than the
log from Django’s admin app (django.contrib.admin). Also, Auditlog saves a summary of the changes in JSON
format, so changes can be tracked easily.

Contents

	Installation
	Adding Auditlog to your Django application

	Usage
	Manually logging changes

	Automatically logging changes

	Actors

	Object history

	Many-to-many relationships

	Management commands

	Django Admin integration

	Internals
	Models and fields

	Middleware

	Signal receivers

	Calculating changes

	Registry

Contribute to Auditlog

If you discovered a bug or want to improve the code, please submit an issue and/or pull request via GitHub.
Before submitting a new issue, please make sure there is no issue submitted that involves the same problem.

GitHub repository: https://github.com/jazzband/django-auditlog

Issues: https://github.com/jazzband/django-auditlog/issues

Installation

Installing Auditlog is simple and straightforward. First of all, you need a copy of Auditlog on your system. The easiest
way to do this is by using the Python Package Index (PyPI). Simply run the following command:

pip install django-auditlog

Instead of installing Auditlog via PyPI, you can also clone the Git repository or download the source code via GitHub.
The repository can be found at https://github.com/jazzband/django-auditlog/.

Requirements

	Python 3.6 or higher

	Django 2.2 or higher

Auditlog is currently tested with Python 3.6 - 3.8 and Django 2.2, 3.1 and 3.2. The latest test report can be found
at https://github.com/jazzband/django-auditlog/actions.

Adding Auditlog to your Django application

To use Auditlog in your application, just add 'auditlog' to your project’s INSTALLED_APPS setting and run
manage.py migrate to create/upgrade the necessary database structure.

If you want Auditlog to automatically set the actor for log entries you also need to enable the middleware by adding
'auditlog.middleware.AuditlogMiddleware' to your MIDDLEWARE setting. Please check Usage for more
information.

Usage

Manually logging changes

Auditlog log entries are simple LogEntry model instances. This makes creating a new log entry very easy. For
even more convenience, LogEntryManager provides a number of methods which take some work out of your hands.

See Internals for all details.

Automatically logging changes

Auditlog can automatically log changes to objects for you. This functionality is based on Django’s signals, but linking
your models to Auditlog is even easier than using signals.

Registering your model for logging can be done with a single line of code, as the following example illustrates:

from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
 pass
 # Model definition goes here

auditlog.register(MyModel)

It is recommended to place the register code (auditlog.register(MyModel)) at the bottom of your models.py file.
This ensures that every time your model is imported it will also be registered to log changes. Auditlog makes sure that
each model is only registered once, otherwise duplicate log entries would occur.

Excluding fields

Fields that are excluded will not trigger saving a new log entry and will not show up in the recorded changes.

To exclude specific fields from the log you can pass include_fields resp. exclude_fields to the register
method. If exclude_fields is specified the fields with the given names will not be included in the generated log
entries. If include_fields is specified only the fields with the given names will be included in the generated log
entries. Explicitly excluding fields through exclude_fields takes precedence over specifying which fields to
include.

For example, to exclude the field last_updated, use:

auditlog.register(MyModel, exclude_fields=['last_updated'])

New in version 0.3.0: Excluding fields

Mapping fields

If you have field names on your models that aren’t intuitive or user friendly you can include a dictionary of field mappings
during the register() call.

class MyModel(modelsModel):
 sku = models.CharField(max_length=20)
 version = models.CharField(max_length=5)
 product = models.CharField(max_length=50, verbose_name='Product Name')
 history = AuditLogHistoryField()

auditlog.register(MyModel, mapping_fields={'sku': 'Product No.', 'version': 'Product Revision'})

log = MyModel.objects.first().history.latest()
log.changes_display_dict
// retrieves changes with keys Product No. Product Revision, and Product Name
// If you don't map a field it will fall back on the verbose_name

New in version 0.5.0.

You do not need to map all the fields of the model, any fields not mapped will fall back on their verbose_name. Django provides a default verbose_name which is a “munged camel case version” so product_name would become Product Name by default.

Actors

When using automatic logging, the actor is empty by default. However, auditlog can set the actor from the current
request automatically. This does not need any custom code, adding a middleware class is enough. When an actor is logged
the remote address of that actor will be logged as well.

To enable the automatic logging of the actors, simply add the following to your MIDDLEWARE setting in your
project’s configuration file:

MIDDLEWARE = (
 # Request altering middleware, e.g., Django's default middleware classes
 'auditlog.middleware.AuditlogMiddleware',
 # Other middleware
)

It is recommended to keep all middleware that alters the request loaded before Auditlog’s middleware.

Warning

Please keep in mind that every object change in a request that gets logged automatically will have the current request’s
user as actor. To only have some object changes to be logged with the current request’s user as actor manual logging is
required.

Object history

Auditlog ships with a custom field that enables you to easily get the log entries that are relevant to your object. This
functionality is built on Django’s content types framework (django.contrib.contenttypes). Using this field in
your models is equally easy as any other field:

from auditlog.models import AuditlogHistoryField
from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
 history = AuditlogHistoryField()
 # Model definition goes here

auditlog.register(MyModel)

AuditlogHistoryField accepts an optional pk_indexable parameter, which is either True or
False, this defaults to True. If your model has a custom primary key that is not an integer value,
pk_indexable needs to be set to False. Keep in mind that this might slow down queries.

The AuditlogHistoryField provides easy access to LogEntry instances related to the model instance. Here is an example of how to use it:

<div class="table-responsive">
 <table class="table table-striped table-bordered">
 <thead>
 <tr>
 <th>Field</th>
 <th>From</th>
 <th>To</th>
 </tr>
 </thead>
 <tbody>
 {% for key, value in mymodel.history.latest.changes_dict.items %}
 <tr>
 <td>{{ key }}</td>
 <td>{{ value.0|default:"None" }}</td>
 <td>{{ value.1|default:"None" }}</td>
 </tr>
 {% empty %}
 <p>No history for this item has been logged yet.</p>
 {% endfor %}
 </tbody>
 </table>
</div>

If you want to display the changes in a more human readable format use the LogEntry’s changes_display_dict instead. The changes_display_dict will make a few cosmetic changes to the data.

	Mapping Fields property will be used to display field names, falling back on verbose_name if no mapping field is present

	Fields with a value whose length is greater than 140 will be truncated with an ellipsis appended

	Date, Time, and DateTime fields will follow L10N formatting. If USE_L10N=False in your settings it will fall back on the settings defaults defined for DATE_FORMAT, TIME_FORMAT, and DATETIME_FORMAT

	Fields with choices will be translated into their human readable form, this feature also supports choices defined on django-multiselectfield and Postgres’s native ArrayField

Check out the internals for the full list of attributes you can use to get associated LogEntry instances.

Many-to-many relationships

New in version 0.3.0.

Warning

To-many relations are not officially supported. However, this section shows a workaround which can be used for now.
In the future, this workaround may be used in an official API or a completly different strategy might be chosen.
Do not rely on the workaround here to be stable across releases.

By default, many-to-many relationships are not tracked by Auditlog.

The history for a many-to-many relationship without an explicit ‘through’ model can be recorded by registering this
model as follows:

auditlog.register(MyModel.related.through)

The log entries for all instances of the ‘through’ model that are related to a MyModel instance can be retrieved
with the LogEntryManager.get_for_objects() method. The resulting QuerySet can be combined with any other
queryset of LogEntry instances. This way it is possible to get a list of all changes on an object and its
related objects:

obj = MyModel.objects.first()
rel_history = LogEntry.objects.get_for_objects(obj.related.all())
full_history = (obj.history.all() | rel_history.all()).order_by('-timestamp')

Management commands

New in version 0.4.0.

Auditlog provides the auditlogflush management command to clear all log entries from the database.

By default, the command asks for confirmation. It is possible to run the command with the -y or –yes flag to skip
confirmation and immediately delete all entries.

Warning

Using the auditlogflush command deletes all log entries permanently and irreversibly from the database.

Django Admin integration

New in version 0.4.1.

When auditlog is added to your INSTALLED_APPS setting a customized admin class is active providing an enhanced
Django Admin interface for log entries.

Internals

You might be interested in the way things work on the inside of Auditlog. This section covers the internal APIs of
Auditlog which is very useful when you are looking for more advanced ways to use the application or if you like to
contribute to the project.

The documentation below is automatically generated from the source code.

Models and fields

	
class auditlog.models.LogEntry(*args, **kwargs)[source]

	Represents an entry in the audit log. The content type is saved along with the textual and numeric (if available)
primary key, as well as the textual representation of the object when it was saved. It holds the action performed
and the fields that were changed in the transaction.

If AuditlogMiddleware is used, the actor will be set automatically. Keep in mind that editing / re-saving LogEntry
instances may set the actor to a wrong value - editing LogEntry instances is not recommended (and it should not be
necessary).

	
class Action[source]

	The actions that Auditlog distinguishes: creating, updating and deleting objects. Viewing objects is not logged.
The values of the actions are numeric, a higher integer value means a more intrusive action. This may be useful
in some cases when comparing actions because the __lt, __lte, __gt, __gte lookup filters can be
used in queries.

The valid actions are Action.CREATE, Action.UPDATE and Action.DELETE.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
changes_dict

	
	Returns

	The changes recorded in this log entry as a dictionary object.

	
changes_display_dict

	
	Returns

	The changes recorded in this log entry intended for display to users as a dictionary object.

	
changes_str

	Return the changes recorded in this log entry as a string. The formatting of the string can be customized by
setting alternate values for colon, arrow and separator. If the formatting is still not satisfying, please use
LogEntry.changes_dict() and format the string yourself.

	Parameters

	
	colon – The string to place between the field name and the values.

	arrow – The string to place between each old and new value.

	separator – The string to place between each field.

	Returns

	A readable string of the changes in this log entry.

	
class auditlog.models.LogEntryManager[source]

	Custom manager for the LogEntry model.

	
get_for_model(model)[source]

	Get log entries for all objects of a specified type.

	Parameters

	model (class) – The model to get log entries for.

	Returns

	QuerySet of log entries for the given model.

	Return type

	QuerySet

	
get_for_object(instance)[source]

	Get log entries for the specified model instance.

	Parameters

	instance (Model) – The model instance to get log entries for.

	Returns

	QuerySet of log entries for the given model instance.

	Return type

	QuerySet

	
get_for_objects(queryset)[source]

	Get log entries for the objects in the specified queryset.

	Parameters

	queryset (QuerySet) – The queryset to get the log entries for.

	Returns

	The LogEntry objects for the objects in the given queryset.

	Return type

	QuerySet

	
log_create(instance, **kwargs)[source]

	Helper method to create a new log entry. This method automatically populates some fields when no explicit value
is given.

	Parameters

	
	instance (Model) – The model instance to log a change for.

	kwargs – Field overrides for the LogEntry object.

	Returns

	The new log entry or None if there were no changes.

	Return type

	LogEntry

	
class auditlog.models.AuditlogHistoryField(pk_indexable=True, delete_related=True, **kwargs)[source]

	A subclass of py:class:django.contrib.contenttypes.fields.GenericRelation that sets some default variables. This
makes it easier to access Auditlog’s log entries, for example in templates.

By default this field will assume that your primary keys are numeric, simply because this is the most common case.
However, if you have a non-integer primary key, you can simply pass pk_indexable=False to the constructor, and
Auditlog will fall back to using a non-indexed text based field for this model.

Using this field will not automatically register the model for automatic logging. This is done so you can be more
flexible with how you use this field.

	Parameters

	
	pk_indexable (bool) – Whether the primary key for this model is not an int or long.

	delete_related (bool) – By default, including a generic relation into a model will cause all related objects to be
cascade-deleted when the parent object is deleted. Passing False to this overrides this behavior, retaining
the full auditlog history for the object. Defaults to True, because that’s Django’s default behavior.

	
bulk_related_objects(objs, using='default')[source]

	Return all objects related to objs via this GenericRelation.

Middleware

	
class auditlog.middleware.AuditlogMiddleware(get_response=None)[source]

	Middleware to couple the request’s user to log items. This is accomplished by currying the signal receiver with the
user from the request (or None if the user is not authenticated).

	
process_exception(request, exception)[source]

	Disconnects the signal receiver to prevent it from staying active in case of an exception.

	
process_request(request)[source]

	Gets the current user from the request and prepares and connects a signal receiver with the user already
attached to it.

	
process_response(request, response)[source]

	Disconnects the signal receiver to prevent it from staying active.

	
static set_actor(user, sender, instance, signal_duid, **kwargs)[source]

	Signal receiver with an extra, required ‘user’ kwarg. This method becomes a real (valid) signal receiver when
it is curried with the actor.

Signal receivers

	
auditlog.receivers.log_create(sender, instance, created, **kwargs)[source]

	Signal receiver that creates a log entry when a model instance is first saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

	
auditlog.receivers.log_delete(sender, instance, **kwargs)[source]

	Signal receiver that creates a log entry when a model instance is deleted from the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

	
auditlog.receivers.log_update(sender, instance, **kwargs)[source]

	Signal receiver that creates a log entry when a model instance is changed and saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

Calculating changes

	
auditlog.diff.get_field_value(obj, field)[source]

	Gets the value of a given model instance field.

	Parameters

	
	obj (Model) – The model instance.

	field (Any) – The field you want to find the value of.

	Returns

	The value of the field as a string.

	Return type

	str

	
auditlog.diff.get_fields_in_model(instance)[source]

	Returns the list of fields in the given model instance. Checks whether to use the official _meta API or use the raw
data. This method excludes many to many fields.

	Parameters

	instance (Model) – The model instance to get the fields for

	Returns

	The list of fields for the given model (instance)

	Return type

	list

	
auditlog.diff.model_instance_diff(old, new)[source]

	Calculates the differences between two model instances. One of the instances may be None (i.e., a newly
created model or deleted model). This will cause all fields with a value to have changed (from None).

	Parameters

	
	old (Model) – The old state of the model instance.

	new (Model) – The new state of the model instance.

	Returns

	A dictionary with the names of the changed fields as keys and a two tuple of the old and new field values
as value.

	Return type

	dict

	
auditlog.diff.track_field(field)[source]

	Returns whether the given field should be tracked by Auditlog.

Untracked fields are many-to-many relations and relations to the Auditlog LogEntry model.

	Parameters

	field (Field) – The field to check.

	Returns

	Whether the given field should be tracked.

	Return type

	bool

Registry

	
class auditlog.registry.AuditlogModelRegistry(create: bool = True, update: bool = True, delete: bool = True, custom: Optional[Dict[django.db.models.signals.ModelSignal, Callable]] = None)[source]

	A registry that keeps track of the models that use Auditlog to track changes.

	
contains(model: django.db.models.base.ModelBase) → bool[source]

	Check if a model is registered with auditlog.

	Parameters

	model – The model to check.

	Returns

	Whether the model has been registered.

	Return type

	bool

	
register(model: django.db.models.base.ModelBase = None, include_fields: Optional[List[str]] = None, exclude_fields: Optional[List[str]] = None, mapping_fields: Optional[Dict[str, str]] = None)[source]

	Register a model with auditlog. Auditlog will then track mutations on this model’s instances.

	Parameters

	
	model – The model to register.

	include_fields – The fields to include. Implicitly excludes all other fields.

	exclude_fields – The fields to exclude. Overrides the fields to include.

	mapping_fields – Mapping from field names to strings in diff.

	
unregister(model: django.db.models.base.ModelBase) → None[source]

	Unregister a model with auditlog. This will not affect the database.

	Parameters

	model – The model to unregister.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 auditlog	

 	
 	
 auditlog.diff	

 	
 	
 auditlog.middleware	

 	
 	
 auditlog.models	

 	
 	
 auditlog.receivers	

 	
 	
 auditlog.registry	

Index

 A
 | B
 | C
 | G
 | L
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	auditlog.diff (module)

 	auditlog.middleware (module)

 	auditlog.models (module)

 	auditlog.receivers (module)

 	
 	auditlog.registry (module)

 	AuditlogHistoryField (class in auditlog.models)

 	AuditlogMiddleware (class in auditlog.middleware)

 	AuditlogModelRegistry (class in auditlog.registry)

B

 	
 	bulk_related_objects() (auditlog.models.AuditlogHistoryField method)

C

 	
 	changes_dict (auditlog.models.LogEntry attribute)

 	changes_display_dict (auditlog.models.LogEntry attribute)

 	
 	changes_str (auditlog.models.LogEntry attribute)

 	contains() (auditlog.registry.AuditlogModelRegistry method)

G

 	
 	get_field_value() (in module auditlog.diff)

 	get_fields_in_model() (in module auditlog.diff)

 	
 	get_for_model() (auditlog.models.LogEntryManager method)

 	get_for_object() (auditlog.models.LogEntryManager method)

 	get_for_objects() (auditlog.models.LogEntryManager method)

L

 	
 	log_create() (auditlog.models.LogEntryManager method)

 	(in module auditlog.receivers)

 	log_delete() (in module auditlog.receivers)

 	log_update() (in module auditlog.receivers)

 	
 	LogEntry (class in auditlog.models)

 	LogEntry.Action (class in auditlog.models)

 	LogEntry.DoesNotExist

 	LogEntry.MultipleObjectsReturned

 	LogEntryManager (class in auditlog.models)

M

 	
 	model_instance_diff() (in module auditlog.diff)

P

 	
 	process_exception() (auditlog.middleware.AuditlogMiddleware method)

 	
 	process_request() (auditlog.middleware.AuditlogMiddleware method)

 	process_response() (auditlog.middleware.AuditlogMiddleware method)

R

 	
 	register() (auditlog.registry.AuditlogModelRegistry method)

S

 	
 	set_actor() (auditlog.middleware.AuditlogMiddleware static method)

T

 	
 	track_field() (in module auditlog.diff)

U

 	
 	unregister() (auditlog.registry.AuditlogModelRegistry method)

 All modules for which code is available

	auditlog.diff

	auditlog.middleware

	auditlog.models

	auditlog.receivers

	auditlog.registry

 Source code for auditlog.diff

from django.conf import settings
from django.core.exceptions import ObjectDoesNotExist
from django.db.models import NOT_PROVIDED, DateTimeField, Model
from django.utils import timezone
from django.utils.encoding import smart_str

[docs]def track_field(field):
 """
 Returns whether the given field should be tracked by Auditlog.

 Untracked fields are many-to-many relations and relations to the Auditlog LogEntry model.

 :param field: The field to check.
 :type field: Field
 :return: Whether the given field should be tracked.
 :rtype: bool
 """
 from auditlog.models import LogEntry

 # Do not track many to many relations
 if field.many_to_many:
 return False

 # Do not track relations to LogEntry
 if (
 getattr(field, "remote_field", None) is not None
 and field.remote_field.model == LogEntry
):
 return False

 return True

[docs]def get_fields_in_model(instance):
 """
 Returns the list of fields in the given model instance. Checks whether to use the official _meta API or use the raw
 data. This method excludes many to many fields.

 :param instance: The model instance to get the fields for
 :type instance: Model
 :return: The list of fields for the given model (instance)
 :rtype: list
 """
 assert isinstance(instance, Model)

 return [f for f in instance._meta.get_fields() if track_field(f)]

[docs]def get_field_value(obj, field):
 """
 Gets the value of a given model instance field.

 :param obj: The model instance.
 :type obj: Model
 :param field: The field you want to find the value of.
 :type field: Any
 :return: The value of the field as a string.
 :rtype: str
 """
 if isinstance(field, DateTimeField):
 # DateTimeFields are timezone-aware, so we need to convert the field
 # to its naive form before we can accurately compare them for changes.
 try:
 value = field.to_python(getattr(obj, field.name, None))
 if value is not None and settings.USE_TZ and not timezone.is_naive(value):
 value = timezone.make_naive(value, timezone=timezone.utc)
 except ObjectDoesNotExist:
 value = field.default if field.default is not NOT_PROVIDED else None
 else:
 try:
 value = smart_str(getattr(obj, field.name, None))
 except ObjectDoesNotExist:
 value = field.default if field.default is not NOT_PROVIDED else None

 return value

[docs]def model_instance_diff(old, new):
 """
 Calculates the differences between two model instances. One of the instances may be ``None`` (i.e., a newly
 created model or deleted model). This will cause all fields with a value to have changed (from ``None``).

 :param old: The old state of the model instance.
 :type old: Model
 :param new: The new state of the model instance.
 :type new: Model
 :return: A dictionary with the names of the changed fields as keys and a two tuple of the old and new field values
 as value.
 :rtype: dict
 """
 from auditlog.registry import auditlog

 if not (old is None or isinstance(old, Model)):
 raise TypeError("The supplied old instance is not a valid model instance.")
 if not (new is None or isinstance(new, Model)):
 raise TypeError("The supplied new instance is not a valid model instance.")

 diff = {}

 if old is not None and new is not None:
 fields = set(old._meta.fields + new._meta.fields)
 model_fields = auditlog.get_model_fields(new._meta.model)
 elif old is not None:
 fields = set(get_fields_in_model(old))
 model_fields = auditlog.get_model_fields(old._meta.model)
 elif new is not None:
 fields = set(get_fields_in_model(new))
 model_fields = auditlog.get_model_fields(new._meta.model)
 else:
 fields = set()
 model_fields = None

 # Check if fields must be filtered
 if (
 model_fields
 and (model_fields["include_fields"] or model_fields["exclude_fields"])
 and fields
):
 filtered_fields = []
 if model_fields["include_fields"]:
 filtered_fields = [
 field
 for field in fields
 if field.name in model_fields["include_fields"]
]
 else:
 filtered_fields = fields
 if model_fields["exclude_fields"]:
 filtered_fields = [
 field
 for field in filtered_fields
 if field.name not in model_fields["exclude_fields"]
]
 fields = filtered_fields

 for field in fields:
 old_value = get_field_value(old, field)
 new_value = get_field_value(new, field)

 if old_value != new_value:
 diff[field.name] = (smart_str(old_value), smart_str(new_value))

 if len(diff) == 0:
 diff = None

 return diff

 Source code for auditlog.middleware

import threading
import time
from functools import partial

from django.apps import apps
from django.conf import settings
from django.db.models.signals import pre_save
from django.utils.deprecation import MiddlewareMixin

from auditlog.models import LogEntry

threadlocal = threading.local()

[docs]class AuditlogMiddleware(MiddlewareMixin):
 """
 Middleware to couple the request's user to log items. This is accomplished by currying the signal receiver with the
 user from the request (or None if the user is not authenticated).
 """

[docs] def process_request(self, request):
 """
 Gets the current user from the request and prepares and connects a signal receiver with the user already
 attached to it.
 """
 # Initialize thread local storage
 threadlocal.auditlog = {
 "signal_duid": (self.__class__, time.time()),
 "remote_addr": request.META.get("REMOTE_ADDR"),
 }

 # In case of proxy, set 'original' address
 if request.META.get("HTTP_X_FORWARDED_FOR"):
 threadlocal.auditlog["remote_addr"] = request.META.get(
 "HTTP_X_FORWARDED_FOR"
).split(",")[0]

 # Connect signal for automatic logging
 if hasattr(request, "user") and getattr(
 request.user, "is_authenticated", False
):
 set_actor = partial(
 self.set_actor,
 user=request.user,
 signal_duid=threadlocal.auditlog["signal_duid"],
)
 pre_save.connect(
 set_actor,
 sender=LogEntry,
 dispatch_uid=threadlocal.auditlog["signal_duid"],
 weak=False,
)

[docs] def process_response(self, request, response):
 """
 Disconnects the signal receiver to prevent it from staying active.
 """
 if hasattr(threadlocal, "auditlog"):
 pre_save.disconnect(
 sender=LogEntry, dispatch_uid=threadlocal.auditlog["signal_duid"]
)

 return response

[docs] def process_exception(self, request, exception):
 """
 Disconnects the signal receiver to prevent it from staying active in case of an exception.
 """
 if hasattr(threadlocal, "auditlog"):
 pre_save.disconnect(
 sender=LogEntry, dispatch_uid=threadlocal.auditlog["signal_duid"]
)

 return None

[docs] @staticmethod
 def set_actor(user, sender, instance, signal_duid, **kwargs):
 """
 Signal receiver with an extra, required 'user' kwarg. This method becomes a real (valid) signal receiver when
 it is curried with the actor.
 """
 if hasattr(threadlocal, "auditlog"):
 if signal_duid != threadlocal.auditlog["signal_duid"]:
 return
 try:
 app_label, model_name = settings.AUTH_USER_MODEL.split(".")
 auth_user_model = apps.get_model(app_label, model_name)
 except ValueError:
 auth_user_model = apps.get_model("auth", "user")
 if (
 sender == LogEntry
 and isinstance(user, auth_user_model)
 and instance.actor is None
):
 instance.actor = user

 instance.remote_addr = threadlocal.auditlog["remote_addr"]

 Source code for auditlog.models

import ast
import json

from dateutil import parser
from dateutil.tz import gettz
from django.conf import settings
from django.contrib.contenttypes.fields import GenericRelation
from django.contrib.contenttypes.models import ContentType
from django.core.exceptions import FieldDoesNotExist
from django.db import DEFAULT_DB_ALIAS, models
from django.db.models import Field, Q, QuerySet
from django.utils import formats, timezone
from django.utils.encoding import smart_str
from django.utils.translation import ugettext_lazy as _
from jsonfield.fields import JSONField

[docs]class LogEntryManager(models.Manager):
 """
 Custom manager for the :py:class:`LogEntry` model.
 """

[docs] def log_create(self, instance, **kwargs):
 """
 Helper method to create a new log entry. This method automatically populates some fields when no explicit value
 is given.

 :param instance: The model instance to log a change for.
 :type instance: Model
 :param kwargs: Field overrides for the :py:class:`LogEntry` object.
 :return: The new log entry or `None` if there were no changes.
 :rtype: LogEntry
 """
 changes = kwargs.get("changes", None)
 pk = self._get_pk_value(instance)

 if changes is not None:
 kwargs.setdefault(
 "content_type", ContentType.objects.get_for_model(instance)
)
 kwargs.setdefault("object_pk", pk)
 kwargs.setdefault("object_repr", smart_str(instance))

 if isinstance(pk, int):
 kwargs.setdefault("object_id", pk)

 get_additional_data = getattr(instance, "get_additional_data", None)
 if callable(get_additional_data):
 kwargs.setdefault("additional_data", get_additional_data())

 # Delete log entries with the same pk as a newly created model. This should only be necessary when an pk is
 # used twice.
 if kwargs.get("action", None) is LogEntry.Action.CREATE:
 if (
 kwargs.get("object_id", None) is not None
 and self.filter(
 content_type=kwargs.get("content_type"),
 object_id=kwargs.get("object_id"),
).exists()
):
 self.filter(
 content_type=kwargs.get("content_type"),
 object_id=kwargs.get("object_id"),
).delete()
 else:
 self.filter(
 content_type=kwargs.get("content_type"),
 object_pk=kwargs.get("object_pk", ""),
).delete()
 # save LogEntry to same database instance is using
 db = instance._state.db
 return (
 self.create(**kwargs)
 if db is None or db == ""
 else self.using(db).create(**kwargs)
)
 return None

[docs] def get_for_object(self, instance):
 """
 Get log entries for the specified model instance.

 :param instance: The model instance to get log entries for.
 :type instance: Model
 :return: QuerySet of log entries for the given model instance.
 :rtype: QuerySet
 """
 # Return empty queryset if the given model instance is not a model instance.
 if not isinstance(instance, models.Model):
 return self.none()

 content_type = ContentType.objects.get_for_model(instance.__class__)
 pk = self._get_pk_value(instance)

 if isinstance(pk, int):
 return self.filter(content_type=content_type, object_id=pk)
 else:
 return self.filter(content_type=content_type, object_pk=smart_str(pk))

[docs] def get_for_objects(self, queryset):
 """
 Get log entries for the objects in the specified queryset.

 :param queryset: The queryset to get the log entries for.
 :type queryset: QuerySet
 :return: The LogEntry objects for the objects in the given queryset.
 :rtype: QuerySet
 """
 if not isinstance(queryset, QuerySet) or queryset.count() == 0:
 return self.none()

 content_type = ContentType.objects.get_for_model(queryset.model)
 primary_keys = list(
 queryset.values_list(queryset.model._meta.pk.name, flat=True)
)

 if isinstance(primary_keys[0], int):
 return (
 self.filter(content_type=content_type)
 .filter(Q(object_id__in=primary_keys))
 .distinct()
)
 elif isinstance(queryset.model._meta.pk, models.UUIDField):
 primary_keys = [smart_str(pk) for pk in primary_keys]
 return (
 self.filter(content_type=content_type)
 .filter(Q(object_pk__in=primary_keys))
 .distinct()
)
 else:
 return (
 self.filter(content_type=content_type)
 .filter(Q(object_pk__in=primary_keys))
 .distinct()
)

[docs] def get_for_model(self, model):
 """
 Get log entries for all objects of a specified type.

 :param model: The model to get log entries for.
 :type model: class
 :return: QuerySet of log entries for the given model.
 :rtype: QuerySet
 """
 # Return empty queryset if the given object is not valid.
 if not issubclass(model, models.Model):
 return self.none()

 content_type = ContentType.objects.get_for_model(model)

 return self.filter(content_type=content_type)

 def _get_pk_value(self, instance):
 """
 Get the primary key field value for a model instance.

 :param instance: The model instance to get the primary key for.
 :type instance: Model
 :return: The primary key value of the given model instance.
 """
 pk_field = instance._meta.pk.name
 pk = getattr(instance, pk_field, None)

 # Check to make sure that we got an pk not a model object.
 if isinstance(pk, models.Model):
 pk = self._get_pk_value(pk)
 return pk

[docs]class LogEntry(models.Model):
 """
 Represents an entry in the audit log. The content type is saved along with the textual and numeric (if available)
 primary key, as well as the textual representation of the object when it was saved. It holds the action performed
 and the fields that were changed in the transaction.

 If AuditlogMiddleware is used, the actor will be set automatically. Keep in mind that editing / re-saving LogEntry
 instances may set the actor to a wrong value - editing LogEntry instances is not recommended (and it should not be
 necessary).
 """

[docs] class Action:
 """
 The actions that Auditlog distinguishes: creating, updating and deleting objects. Viewing objects is not logged.
 The values of the actions are numeric, a higher integer value means a more intrusive action. This may be useful
 in some cases when comparing actions because the ``__lt``, ``__lte``, ``__gt``, ``__gte`` lookup filters can be
 used in queries.

 The valid actions are :py:attr:`Action.CREATE`, :py:attr:`Action.UPDATE` and :py:attr:`Action.DELETE`.
 """

 CREATE = 0
 UPDATE = 1
 DELETE = 2

 choices = (
 (CREATE, _("create")),
 (UPDATE, _("update")),
 (DELETE, _("delete")),
)

 content_type = models.ForeignKey(
 to="contenttypes.ContentType",
 on_delete=models.CASCADE,
 related_name="+",
 verbose_name=_("content type"),
)
 object_pk = models.CharField(
 db_index=True, max_length=255, verbose_name=_("object pk")
)
 object_id = models.BigIntegerField(
 blank=True, db_index=True, null=True, verbose_name=_("object id")
)
 object_repr = models.TextField(verbose_name=_("object representation"))
 action = models.PositiveSmallIntegerField(
 choices=Action.choices, verbose_name=_("action")
)
 changes = models.TextField(blank=True, verbose_name=_("change message"))
 actor = models.ForeignKey(
 to=settings.AUTH_USER_MODEL,
 on_delete=models.SET_NULL,
 blank=True,
 null=True,
 related_name="+",
 verbose_name=_("actor"),
)
 remote_addr = models.GenericIPAddressField(
 blank=True, null=True, verbose_name=_("remote address")
)
 timestamp = models.DateTimeField(auto_now_add=True, verbose_name=_("timestamp"))
 additional_data = JSONField(
 blank=True, null=True, verbose_name=_("additional data")
)

 objects = LogEntryManager()

 class Meta:
 get_latest_by = "timestamp"
 ordering = ["-timestamp"]
 verbose_name = _("log entry")
 verbose_name_plural = _("log entries")

 def __str__(self):
 if self.action == self.Action.CREATE:
 fstring = _("Created {repr:s}")
 elif self.action == self.Action.UPDATE:
 fstring = _("Updated {repr:s}")
 elif self.action == self.Action.DELETE:
 fstring = _("Deleted {repr:s}")
 else:
 fstring = _("Logged {repr:s}")

 return fstring.format(repr=self.object_repr)

 @property
 def changes_dict(self):
 """
 :return: The changes recorded in this log entry as a dictionary object.
 """
 try:
 return json.loads(self.changes)
 except ValueError:
 return {}

 @property
 def changes_str(self, colon=": ", arrow=" \u2192 ", separator="; "):
 """
 Return the changes recorded in this log entry as a string. The formatting of the string can be customized by
 setting alternate values for colon, arrow and separator. If the formatting is still not satisfying, please use
 :py:func:`LogEntry.changes_dict` and format the string yourself.

 :param colon: The string to place between the field name and the values.
 :param arrow: The string to place between each old and new value.
 :param separator: The string to place between each field.
 :return: A readable string of the changes in this log entry.
 """
 substrings = []

 for field, values in self.changes_dict.items():
 substring = "{field_name:s}{colon:s}{old:s}{arrow:s}{new:s}".format(
 field_name=field,
 colon=colon,
 old=values[0],
 arrow=arrow,
 new=values[1],
)
 substrings.append(substring)

 return separator.join(substrings)

 @property
 def changes_display_dict(self):
 """
 :return: The changes recorded in this log entry intended for display to users as a dictionary object.
 """
 # Get the model and model_fields
 from auditlog.registry import auditlog

 model = self.content_type.model_class()
 model_fields = auditlog.get_model_fields(model._meta.model)
 changes_display_dict = {}
 # grab the changes_dict and iterate through
 for field_name, values in self.changes_dict.items():
 # try to get the field attribute on the model
 try:
 field = model._meta.get_field(field_name)
 except FieldDoesNotExist:
 changes_display_dict[field_name] = values
 continue
 values_display = []
 # handle choices fields and Postgres ArrayField to get human readable version
 choices_dict = None
 if getattr(field, "choices") and len(field.choices) > 0:
 choices_dict = dict(field.choices)
 if (
 hasattr(field, "base_field")
 and isinstance(field.base_field, Field)
 and getattr(field.base_field, "choices")
 and len(field.base_field.choices) > 0
):
 choices_dict = dict(field.base_field.choices)

 if choices_dict:
 for value in values:
 try:
 value = ast.literal_eval(value)
 if type(value) is [].__class__:
 values_display.append(
 ", ".join(
 [choices_dict.get(val, "None") for val in value]
)
)
 else:
 values_display.append(choices_dict.get(value, "None"))
 except ValueError:
 values_display.append(choices_dict.get(value, "None"))
 except:
 values_display.append(choices_dict.get(value, "None"))
 else:
 try:
 field_type = field.get_internal_type()
 except AttributeError:
 # if the field is a relationship it has no internal type and exclude it
 continue
 for value in values:
 # handle case where field is a datetime, date, or time type
 if field_type in ["DateTimeField", "DateField", "TimeField"]:
 try:
 value = parser.parse(value)
 if field_type == "DateField":
 value = value.date()
 elif field_type == "TimeField":
 value = value.time()
 elif field_type == "DateTimeField":
 value = value.replace(tzinfo=timezone.utc)
 value = value.astimezone(gettz(settings.TIME_ZONE))
 value = formats.localize(value)
 except ValueError:
 pass
 # check if length is longer than 140 and truncate with ellipsis
 if len(value) > 140:
 value = "{}...".format(value[:140])

 values_display.append(value)
 verbose_name = model_fields["mapping_fields"].get(
 field.name, getattr(field, "verbose_name", field.name)
)
 changes_display_dict[verbose_name] = values_display
 return changes_display_dict

[docs]class AuditlogHistoryField(GenericRelation):
 """
 A subclass of py:class:`django.contrib.contenttypes.fields.GenericRelation` that sets some default variables. This
 makes it easier to access Auditlog's log entries, for example in templates.

 By default this field will assume that your primary keys are numeric, simply because this is the most common case.
 However, if you have a non-integer primary key, you can simply pass ``pk_indexable=False`` to the constructor, and
 Auditlog will fall back to using a non-indexed text based field for this model.

 Using this field will not automatically register the model for automatic logging. This is done so you can be more
 flexible with how you use this field.

 :param pk_indexable: Whether the primary key for this model is not an :py:class:`int` or :py:class:`long`.
 :type pk_indexable: bool
 :param delete_related: By default, including a generic relation into a model will cause all related objects to be
 cascade-deleted when the parent object is deleted. Passing False to this overrides this behavior, retaining
 the full auditlog history for the object. Defaults to True, because that's Django's default behavior.
 :type delete_related: bool
 """

 def __init__(self, pk_indexable=True, delete_related=True, **kwargs):
 kwargs["to"] = LogEntry

 if pk_indexable:
 kwargs["object_id_field"] = "object_id"
 else:
 kwargs["object_id_field"] = "object_pk"

 kwargs["content_type_field"] = "content_type"
 self.delete_related = delete_related
 super(AuditlogHistoryField, self).__init__(**kwargs)

[docs] def bulk_related_objects(self, objs, using=DEFAULT_DB_ALIAS):
 """
 Return all objects related to ``objs`` via this ``GenericRelation``.
 """
 if self.delete_related:
 return super(AuditlogHistoryField, self).bulk_related_objects(objs, using)

 # When deleting, Collector.collect() finds related objects using this
 # method. However, because we don't want to delete these related
 # objects, we simply return an empty list.
 return []

South compatibility for AuditlogHistoryField
try:
 from south.modelsinspector import add_introspection_rules

 add_introspection_rules([], ["^auditlog\.models\.AuditlogHistoryField"])
 raise DeprecationWarning(
 "South support will be dropped in django-auditlog 0.4.0 or later."
)
except ImportError:
 pass

 Source code for auditlog.receivers

import json

from auditlog.diff import model_instance_diff
from auditlog.models import LogEntry

[docs]def log_create(sender, instance, created, **kwargs):
 """
 Signal receiver that creates a log entry when a model instance is first saved to the database.

 Direct use is discouraged, connect your model through :py:func:`auditlog.registry.register` instead.
 """
 if created:
 changes = model_instance_diff(None, instance)

 log_entry = LogEntry.objects.log_create(
 instance,
 action=LogEntry.Action.CREATE,
 changes=json.dumps(changes),
)

[docs]def log_update(sender, instance, **kwargs):
 """
 Signal receiver that creates a log entry when a model instance is changed and saved to the database.

 Direct use is discouraged, connect your model through :py:func:`auditlog.registry.register` instead.
 """
 if instance.pk is not None:
 try:
 old = sender.objects.get(pk=instance.pk)
 except sender.DoesNotExist:
 pass
 else:
 new = instance

 changes = model_instance_diff(old, new)

 # Log an entry only if there are changes
 if changes:
 log_entry = LogEntry.objects.log_create(
 instance,
 action=LogEntry.Action.UPDATE,
 changes=json.dumps(changes),
)

[docs]def log_delete(sender, instance, **kwargs):
 """
 Signal receiver that creates a log entry when a model instance is deleted from the database.

 Direct use is discouraged, connect your model through :py:func:`auditlog.registry.register` instead.
 """
 if instance.pk is not None:
 changes = model_instance_diff(instance, None)

 log_entry = LogEntry.objects.log_create(
 instance,
 action=LogEntry.Action.DELETE,
 changes=json.dumps(changes),
)

 Source code for auditlog.registry

from typing import Callable, Dict, List, Optional, Tuple

from django.db.models import Model
from django.db.models.base import ModelBase
from django.db.models.signals import ModelSignal, post_delete, post_save, pre_save

DispatchUID = Tuple[int, str, int]

[docs]class AuditlogModelRegistry(object):
 """
 A registry that keeps track of the models that use Auditlog to track changes.
 """

 def __init__(
 self,
 create: bool = True,
 update: bool = True,
 delete: bool = True,
 custom: Optional[Dict[ModelSignal, Callable]] = None,
):
 from auditlog.receivers import log_create, log_delete, log_update

 self._registry = {}
 self._signals = {}

 if create:
 self._signals[post_save] = log_create
 if update:
 self._signals[pre_save] = log_update
 if delete:
 self._signals[post_delete] = log_delete

 if custom is not None:
 self._signals.update(custom)

[docs] def register(
 self,
 model: ModelBase = None,
 include_fields: Optional[List[str]] = None,
 exclude_fields: Optional[List[str]] = None,
 mapping_fields: Optional[Dict[str, str]] = None,
):
 """
 Register a model with auditlog. Auditlog will then track mutations on this model's instances.

 :param model: The model to register.
 :param include_fields: The fields to include. Implicitly excludes all other fields.
 :param exclude_fields: The fields to exclude. Overrides the fields to include.
 :param mapping_fields: Mapping from field names to strings in diff.

 """

 if include_fields is None:
 include_fields = []
 if exclude_fields is None:
 exclude_fields = []
 if mapping_fields is None:
 mapping_fields = {}

 def registrar(cls):
 """Register models for a given class."""
 if not issubclass(cls, Model):
 raise TypeError("Supplied model is not a valid model.")

 self._registry[cls] = {
 "include_fields": include_fields,
 "exclude_fields": exclude_fields,
 "mapping_fields": mapping_fields,
 }
 self._connect_signals(cls)

 # We need to return the class, as the decorator is basically
 # syntactic sugar for:
 # MyClass = auditlog.register(MyClass)
 return cls

 if model is None:
 # If we're being used as a decorator, return a callable with the
 # wrapper.
 return lambda cls: registrar(cls)
 else:
 # Otherwise, just register the model.
 registrar(model)

[docs] def contains(self, model: ModelBase) -> bool:
 """
 Check if a model is registered with auditlog.

 :param model: The model to check.
 :return: Whether the model has been registered.
 :rtype: bool
 """
 return model in self._registry

[docs] def unregister(self, model: ModelBase) -> None:
 """
 Unregister a model with auditlog. This will not affect the database.

 :param model: The model to unregister.
 """
 try:
 del self._registry[model]
 except KeyError:
 pass
 else:
 self._disconnect_signals(model)

 def get_models(self) -> List[ModelBase]:
 return list(self._registry.keys())

 def get_model_fields(self, model: ModelBase):
 return {
 "include_fields": list(self._registry[model]["include_fields"]),
 "exclude_fields": list(self._registry[model]["exclude_fields"]),
 "mapping_fields": dict(self._registry[model]["mapping_fields"]),
 }

 def _connect_signals(self, model):
 """
 Connect signals for the model.
 """
 for signal in self._signals:
 receiver = self._signals[signal]
 signal.connect(
 receiver, sender=model, dispatch_uid=self._dispatch_uid(signal, model)
)

 def _disconnect_signals(self, model):
 """
 Disconnect signals for the model.
 """
 for signal, receiver in self._signals.items():
 signal.disconnect(
 sender=model, dispatch_uid=self._dispatch_uid(signal, model)
)

 def _dispatch_uid(self, signal, model) -> DispatchUID:
 """
 Generate a dispatch_uid.
 """
 return self.__hash__(), model.__qualname__, signal.__hash__()

auditlog = AuditlogModelRegistry()

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 django-auditlog documentation

 		
 Installation

 		
 Adding Auditlog to your Django application

 		
 Usage

 		
 Manually logging changes

 		
 Automatically logging changes

 		
 Actors

 		
 Object history

 		
 Many-to-many relationships

 		
 Management commands

 		
 Django Admin integration

 		
 Internals

 		
 Models and fields

 		
 Middleware

 		
 Signal receivers

 		
 Calculating changes

 		
 Registry

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

