
django-auditlog
Release 3.0.0.post1+gb768dc7

Jan-Jelle Kester and contributors

Apr 15, 2024

CONTENTS

1 Contents 3
1.1 Installation . 3
1.2 Usage . 3
1.3 Upgrading to version 3 . 11
1.4 Internals . 12

2 Contribute to Auditlog 21

Python Module Index 23

Index 25

i

ii

django-auditlog, Release 3.0.0.post1+gb768dc7

django-auditlog (Auditlog) is a reusable app for Django that makes logging object changes a breeze. Auditlog tries to
use as much as Python and Django’s built in functionality to keep the list of dependencies as short as possible. Also,
Auditlog aims to be fast and simple to use.

Auditlog is created out of the need for a simple Django app that logs changes to models along with the user who made
the changes (later referred to as actor). Existing solutions seemed to offer a type of version control, which was found
excessive and expensive in terms of database storage and performance.

The core idea of Auditlog is similar to the log from Django’s admin. However, Auditlog is much more flexible than the
log from Django’s admin app (django.contrib.admin). Also, Auditlog saves a summary of the changes in JSON
format, so changes can be tracked easily.

CONTENTS 1

django-auditlog, Release 3.0.0.post1+gb768dc7

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

Installing Auditlog is simple and straightforward. First of all, you need a copy of Auditlog on your system. The easiest
way to do this is by using the Python Package Index (PyPI). Simply run the following command:

pip install django-auditlog

Instead of installing Auditlog via PyPI, you can also clone the Git repository or download the source code via GitHub.
The repository can be found at https://github.com/jazzband/django-auditlog/.

Requirements

• Python 3.8 or higher

• Django 3.2, 4.2 and 5.0

Auditlog is currently tested with Python 3.8+ and Django 3.2, 4.2 and 5.0. The latest test report can be found at
https://github.com/jazzband/django-auditlog/actions.

1.1.1 Adding Auditlog to your Django application

To use Auditlog in your application, just add 'auditlog' to your project’s INSTALLED_APPS setting and run manage.
py migrate to create/upgrade the necessary database structure.

If you want Auditlog to automatically set the actor for log entries you also need to enable the middleware by adding
'auditlog.middleware.AuditlogMiddleware' to your MIDDLEWARE setting. Please check Usage for more infor-
mation.

1.2 Usage

1.2.1 Manually logging changes

Auditlog log entries are simple LogEntry model instances. This makes creating a new log entry very easy. For even
more convenience, LogEntryManager provides a number of methods which take some work out of your hands.

See Internals for all details.

3

https://github.com/jazzband/django-auditlog/
https://github.com/jazzband/django-auditlog/actions

django-auditlog, Release 3.0.0.post1+gb768dc7

1.2.2 Automatically logging changes

Auditlog can automatically log changes to objects for you. This functionality is based on Django’s signals, but linking
your models to Auditlog is even easier than using signals.

Registering your model for logging can be done with a single line of code, as the following example illustrates:

from django.db import models

from auditlog.registry import auditlog

class MyModel(models.Model):
pass
Model definition goes here

auditlog.register(MyModel)

It is recommended to place the register code (auditlog.register(MyModel)) at the bottom of your models.py file.
This ensures that every time your model is imported it will also be registered to log changes. Auditlog makes sure that
each model is only registered once, otherwise duplicate log entries would occur.

Logging access

By default, Auditlog will only log changes to your model instances. If you want to log access to your model instances
as well, Auditlog provides a mixin class for that purpose. Simply add the auditlog.mixins.LogAccessMixin to
your class based view and Auditlog will log access to your model instances. The mixin expects your view to have
a get_object method that returns the model instance for which access shall be logged - this is usually the case for
DetailViews and UpdateViews.

A DetailView utilizing the LogAccessMixin could look like the following example:

from django.views.generic import DetailView

from auditlog.mixins import LogAccessMixin

class MyModelDetailView(LogAccessMixin, DetailView):
model = MyModel

View code goes here

Excluding fields

Fields that are excluded will not trigger saving a new log entry and will not show up in the recorded changes.

To exclude specific fields from the log you can pass include_fields resp. exclude_fields to the register
method. If exclude_fields is specified the fields with the given names will not be included in the generated log
entries. If include_fields is specified only the fields with the given names will be included in the generated log
entries. Explicitly excluding fields through exclude_fields takes precedence over specifying which fields to include.

For example, to exclude the field last_updated, use:

auditlog.register(MyModel, exclude_fields=['last_updated'])

New in version 0.3.0: Excluding fields

Mapping fields

If you have field names on your models that aren’t intuitive or user friendly you can include a dictionary of field
mappings during the register() call.

4 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

from django.db import models

from auditlog.models import AuditlogHistoryField
from auditlog.registry import auditlog

class MyModel(models.Model):
sku = models.CharField(max_length=20)
version = models.CharField(max_length=5)
product = models.CharField(max_length=50, verbose_name='Product Name')
history = AuditlogHistoryField()

auditlog.register(MyModel, mapping_fields={'sku': 'Product No.', 'version': 'Product␣
→˓Revision'})

log = MyModel.objects.first().history.latest()
log.changes_display_dict
// retrieves changes with keys Product No. Product Revision, and Product Name
// If you don't map a field it will fall back on the verbose_name

New in version 0.5.0.

You do not need to map all the fields of the model, any fields not mapped will fall back on their verbose_name. Django
provides a default verbose_namewhich is a “munged camel case version” so product_namewould become Product
Name by default.

Masking fields

Fields that contain sensitive info and we want keep track of field change but not to contain the exact change.

To mask specific fields from the log you can pass mask_fields to the registermethod. If mask_fields is specified,
the first half value of the fields is masked using *.

For example, to mask the field address, use:

auditlog.register(MyModel, mask_fields=['address'])

New in version 2.0.0: Masking fields

Many-to-many fields

Changes to many-to-many fields are not tracked by default. If you want to enable tracking of a many-to-many field on
a model, pass m2m_fields to the register method:

auditlog.register(MyModel, m2m_fields={"tags", "contacts"})

This functionality is based on the m2m_changed signal sent by the through model of the relationship.

Note that when the user changes multiple many-to-many fields on the same object through the admin, both adding and
removing some objects from each, this code will generate multiple log entries: each log entry will represent a single
operation (add or delete) of a single field, e.g. if you both add and delete values from 2 fields on the same form in the
same request, you’ll get 4 log entries.

New in version 2.1.0.

Serialized Data

The state of an object following a change action may be optionally serialized and persisted in the LogEntry.
serialized_data JSONField. To enable this feature for a registered model, add serialize_data=True to the
kwargs on the auditlog.register(...) method. Object serialization will not occur unless this kwarg is set.

1.2. Usage 5

django-auditlog, Release 3.0.0.post1+gb768dc7

auditlog.register(MyModel, serialize_data=True)

Objects are serialized using the Django core serializer. Keyword arguments may be passed to the serializer through
serialize_kwargs.

auditlog.register(
MyModel,
serialize_data=True,
serialize_kwargs={"fields": ["foo", "bar", "biz", "baz"]}

)

Note that all fields on the object will be serialized unless restricted with one or more configurations. The serial-
ize_kwargs option contains a fields argument and this may be given an inclusive list of field names to serialize (as
shown above). Alternatively, one may set serialize_auditlog_fields_only to True when registering a model
with exclude_fields and include_fields set (as shown below). This will cause the data persisted in LogEntry.
serialized_data to be limited to the same scope that is persisted within the LogEntry.changes field.

auditlog.register(
MyModel,
exclude_fields=["ssn", "confidential"]
serialize_data=True,
serialize_auditlog_fields_only=True

)

Field masking is supported in object serialization. Any value belonging to a field whose name is found in the
mask_fields list will be masked in the serialized object data. Masked values are obfuscated with asterisks in the
same way as they are in the LogEntry.changes field.

1.2.3 Correlation ID

You can store a correlation ID (cid) in the log entries by:

1. Reading from a request header (specified by AUDITLOG_CID_HEADER)

2. Using a custom cid getter (specified by AUDITLOG_CID_GETTER)

Using the custom getter is helpful for integrating with a third-party cid package such as django-cid.

1.2.4 Settings

AUDITLOG_INCLUDE_ALL_MODELS

You can use this setting to register all your models:

AUDITLOG_INCLUDE_ALL_MODELS=True

New in version 2.1.0.

AUDITLOG_EXCLUDE_TRACKING_FIELDS

You can use this setting to exclude named fields from ALL models. This is useful when lots of models share simi-
lar fields like `created` and `modified` and you want those excluded from logging. It will be considered when
AUDITLOG_INCLUDE_ALL_MODELS is True.

6 Chapter 1. Contents

https://pypi.org/project/django-cid/

django-auditlog, Release 3.0.0.post1+gb768dc7

AUDITLOG_EXCLUDE_TRACKING_FIELDS = (
"created",
"modified"

)

New in version 3.0.0.

AUDITLOG_EXCLUDE_TRACKING_FIELDS

When using “AuditlogMiddleware”, the IP address is logged by default, you can use this setting to exclude the IP
address from logging. It will be considered when AUDITLOG_DISABLE_REMOTE_ADDR is True.

AUDITLOG_DISABLE_REMOTE_ADDR = True

New in version 3.0.0.

AUDITLOG_EXCLUDE_TRACKING_MODELS

You can use this setting to exclude models in registration process. It will be considered when
AUDITLOG_INCLUDE_ALL_MODELS is True.

AUDITLOG_EXCLUDE_TRACKING_MODELS = (
"<app_name>",
"<app_name>.<model>"

)

New in version 2.1.0.

AUDITLOG_INCLUDE_TRACKING_MODELS

You can use this setting to configure your models registration and other behaviours. It must be a list or tuple. Each
item in this setting can be a:

• str: To register a model.

• dict: To register a model and define its logging behaviour. e.g. include_fields, exclude_fields.

AUDITLOG_INCLUDE_TRACKING_MODELS = (
"<appname>.<model1>",
{

"model": "<appname>.<model2>",
"include_fields": ["field1", "field2"],
"exclude_fields": ["field3", "field4"],
"mapping_fields": {

"field1": "FIELD",
},
"mask_fields": ["field5", "field6"],
"m2m_fields": ["field7", "field8"],
"serialize_data": True,
"serialize_auditlog_fields_only": False,
"serialize_kwargs": {"fields": ["foo", "bar", "biz", "baz"]},

},
"<appname>.<model3>",

)

New in version 2.1.0.

AUDITLOG_DISABLE_ON_RAW_SAVE

1.2. Usage 7

django-auditlog, Release 3.0.0.post1+gb768dc7

Disables logging during raw save. (I.e. for instance using loaddata)

Note: M2M operations will still be logged, since they’re never considered raw. To disable them you must remove
their setting or use the disable_auditlog context manager.

New in version 2.2.0.

AUDITLOG_CID_HEADER

The request header containing the Correlation ID value to use in all log entries created as a result of the request. The
value can of in the format HTTP_MY_HEADER or my-header.

New in version 3.0.0.

AUDITLOG_CID_GETTER

The function to use to retrieve the Correlation ID. The value can be a callable or a string import path.

If the value is None, the default getter will be used.

New in version 3.0.0.

1.2.5 Actors

Middleware

When using automatic logging, the actor is empty by default. However, auditlog can set the actor from the current
request automatically. This does not need any custom code, adding a middleware class is enough. When an actor is
logged the remote address of that actor will be logged as well.

To enable the automatic logging of the actors, simply add the following to your MIDDLEWARE setting in your project’s
configuration file:

MIDDLEWARE = (
Request altering middleware, e.g., Django's default middleware classes
'auditlog.middleware.AuditlogMiddleware',
Other middleware

)

It is recommended to keep all middleware that alters the request loaded before Auditlog’s middleware.

Warning: Please keep in mind that every object change in a request that gets logged automatically will have the
current request’s user as actor. To only have some object changes to be logged with the current request’s user as
actor manual logging is required.

8 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

1.2.6 Context managers

Set actor

To enable the automatic logging of the actors outside of request context (e.g. in a Celery task), you can use a context
manager:

from auditlog.context import set_actor

def do_stuff(actor_id: int):
actor = get_user(actor_id)
with set_actor(actor):

if your code here leads to creation of LogEntry instances, these will have the␣
→˓actor set

...

New in version 2.1.0.

Disable auditlog

Disable auditlog temporary, for instance if you need to install a large fixture on a live system or cleanup corrupt data:

from auditlog.context import disable_auditlog

with disable_auditlog():
Do things silently here
...

New in version 2.2.0.

1.2.7 Object history

Auditlog ships with a custom field that enables you to easily get the log entries that are relevant to your object. This
functionality is built on Django’s content types framework (django.contrib.contenttypes). Using this field in
your models is equally easy as any other field:

from django.db import models

from auditlog.models import AuditlogHistoryField
from auditlog.registry import auditlog

class MyModel(models.Model):
history = AuditlogHistoryField()
Model definition goes here

auditlog.register(MyModel)

AuditlogHistoryField accepts an optional pk_indexable parameter, which is either True or False, this defaults
to True. If your model has a custom primary key that is not an integer value, pk_indexable needs to be set to False.
Keep in mind that this might slow down queries.

The AuditlogHistoryField provides easy access to LogEntry instances related to the model instance. Here is an
example of how to use it:

1.2. Usage 9

django-auditlog, Release 3.0.0.post1+gb768dc7

<div class="table-responsive">
<table class="table table-striped table-bordered">
<thead>

<tr>
<th>Field</th>
<th>From</th>
<th>To</th>

</tr>
</thead>
<tbody>
{% for key, value in mymodel.history.latest.changes_dict.items %}
<tr>
<td>{{ key }}</td>
<td>{{ value.0|default:"None" }}</td>
<td>{{ value.1|default:"None" }}</td>

</tr>
{% empty %}
<p>No history for this item has been logged yet.</p>

{% endfor %}
</tbody>

</table>
</div>

If you want to display the changes in a more human readable format use the LogEntry’s changes_display_dict
instead. The changes_display_dict will make a few cosmetic changes to the data.

• Mapping Fields property will be used to display field names, falling back on verbose_name if no mapping field
is present

• Fields with a value whose length is greater than 140 will be truncated with an ellipsis appended

• Date, Time, and DateTime fields will follow L10N formatting. If USE_L10N=False in your settings it will fall
back on the settings defaults defined for DATE_FORMAT, TIME_FORMAT, and DATETIME_FORMAT

• Fields with choices will be translated into their human readable form, this feature also supports choices defined
on django-multiselectfield and Postgres’s native ArrayField

Check out the internals for the full list of attributes you can use to get associated LogEntry instances.

1.2.8 Many-to-many relationships

New in version 0.3.0.

Note: This section shows a workaround which can be used to track many-to-many relationships on older versions of
django-auditlog. For versions 2.1.0 and onwards, please see the many-to-many fields section of Automatically logging
changes. Do not rely on the workaround here to be stable across releases.

By default, many-to-many relationships are not tracked by Auditlog.

The history for a many-to-many relationship without an explicit ‘through’ model can be recorded by registering this
model as follows:

auditlog.register(MyModel.related.through)

10 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

The log entries for all instances of the ‘through’ model that are related to a MyModel instance can be retrieved with the
LogEntryManager.get_for_objects()method. The resulting QuerySet can be combined with any other queryset
of LogEntry instances. This way it is possible to get a list of all changes on an object and its related objects:

obj = MyModel.objects.first()
rel_history = LogEntry.objects.get_for_objects(obj.related.all())
full_history = (obj.history.all() | rel_history.all()).order_by('-timestamp')

1.2.9 Management commands

New in version 0.4.0.

Auditlog provides the auditlogflush management command to clear all log entries from the database.

By default, the command asks for confirmation. It is possible to run the command with the -y or --yes flag to skip
confirmation and immediately delete all entries.

You may also specify a date using the -b or --before-date option in ISO 8601 format (YYYY-mm-dd) to delete all
log entries prior to a given date. This may be used to implement time based retention windows.

New in version 2.1.0.

Warning: Using the auditlogflush command deletes log entries permanently and irreversibly from the
database.

1.2.10 Django Admin integration

New in version 0.4.1.

When auditlog is added to your INSTALLED_APPS setting a customized admin class is active providing an enhanced
Django Admin interface for log entries.

1.3 Upgrading to version 3

Version 3.0.0 introduces breaking changes. Please review the migration guide below before upgrading. If you’re new
to django-auditlog, you can ignore this part.

The major change in the version is that we’re finally storing changes as json instead of json-text. To convert the existing
records, this version has a database migration that does just that. However, this migration will take a long time if you
have a huge amount of records, causing your database and application to be out of sync until the migration is complete.

To avoid this, follow these steps:

1. Before upgrading the package, add these two variables to settings.py:

• AUDITLOG_TWO_STEP_MIGRATION = True

• AUDITLOG_USE_TEXT_CHANGES_IF_JSON_IS_NOT_PRESENT = True

2. Upgrade the package. Your app will now start storing new records as JSON, but the old records will accessible
via LogEntry.changes_text.

3. Use the newly added auditlogmigratejson command to migrate your records. Run django-admin
auditlogmigratejson --help to get more information.

1.3. Upgrading to version 3 11

django-auditlog, Release 3.0.0.post1+gb768dc7

4. Once all records are migrated, remove the variables listed above, or set their values to False.

1.4 Internals

You might be interested in the way things work on the inside of Auditlog. This section covers the internal APIs of
Auditlog which is very useful when you are looking for more advanced ways to use the application or if you like to
contribute to the project.

The documentation below is automatically generated from the source code.

1.4.1 Models and fields

class auditlog.models.AuditlogHistoryField(pk_indexable=True, delete_related=False, **kwargs)
A subclass of py:class:django.contrib.contenttypes.fields.GenericRelation that sets some default variables. This
makes it easier to access Auditlog’s log entries, for example in templates.

By default, this field will assume that your primary keys are numeric, simply because this is the most com-
mon case. However, if you have a non-integer primary key, you can simply pass pk_indexable=False to the
constructor, and Auditlog will fall back to using a non-indexed text based field for this model.

Using this field will not automatically register the model for automatic logging. This is done so you can be more
flexible with how you use this field.

Parameters

• pk_indexable (bool) – Whether the primary key for this model is not an int or long.

• delete_related (bool) – Delete referenced auditlog entries together with the tracked ob-
ject. Defaults to False to keep the integrity of the auditlog.

bulk_related_objects(objs, using='default')
Return all objects related to objs via this GenericRelation.

class auditlog.models.LogEntry(*args, **kwargs)
Represents an entry in the audit log. The content type is saved along with the textual and numeric (if available)
primary key, as well as the textual representation of the object when it was saved. It holds the action performed
and the fields that were changed in the transaction.

If AuditlogMiddleware is used, the actor will be set automatically. Keep in mind that editing / re-saving LogEntry
instances may set the actor to a wrong value - editing LogEntry instances is not recommended (and it should not
be necessary).

class Action

The actions that Auditlog distinguishes: creating, updating and deleting objects. Viewing objects is not
logged. The values of the actions are numeric, a higher integer value means a more intrusive action. This
may be useful in some cases when comparing actions because the __lt, __lte, __gt, __gte lookup filters
can be used in queries.

The valid actions are Action.CREATE, Action.UPDATE, Action.DELETE and Action.ACCESS.

exception DoesNotExist

exception MultipleObjectsReturned

12 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

property changes_dict

Returns
The changes recorded in this log entry as a dictionary object.

property changes_display_dict

Returns
The changes recorded in this log entry intended for display to users as a dictionary object.

property changes_str

Return the changes recorded in this log entry as a string. The formatting of the string can be customized
by setting alternate values for colon, arrow and separator. If the formatting is still not satisfying, please use
LogEntry.changes_dict() and format the string yourself.

Parameters

• colon – The string to place between the field name and the values.

• arrow – The string to place between each old and new value.

• separator – The string to place between each field.

Returns
A readable string of the changes in this log entry.

class auditlog.models.LogEntryManager(*args, **kwargs)
Custom manager for the LogEntry model.

get_for_model(model)
Get log entries for all objects of a specified type.

Parameters
model (class) – The model to get log entries for.

Returns
QuerySet of log entries for the given model.

Return type
QuerySet

get_for_object(instance)
Get log entries for the specified model instance.

Parameters
instance (Model) – The model instance to get log entries for.

Returns
QuerySet of log entries for the given model instance.

Return type
QuerySet

get_for_objects(queryset)
Get log entries for the objects in the specified queryset.

Parameters
queryset (QuerySet) – The queryset to get the log entries for.

Returns
The LogEntry objects for the objects in the given queryset.

1.4. Internals 13

django-auditlog, Release 3.0.0.post1+gb768dc7

Return type
QuerySet

log_create(instance, force_log: bool = False, **kwargs)
Helper method to create a new log entry. This method automatically populates some fields when no explicit
value is given.

Parameters

• instance (Model) – The model instance to log a change for.

• force_log (bool) – Create a LogEntry even if no changes exist.

• kwargs – Field overrides for the LogEntry object.

Returns
The new log entry or None if there were no changes.

Return type
LogEntry

log_m2m_changes(changed_queryset, instance, operation, field_name, **kwargs)
Create a new “changed” log entry from m2m record.

Parameters

• changed_queryset (QuerySet) – The added or removed related objects.

• instance (Model) – The model instance to log a change for.

• operation – “add” or “delete”.

• field_name (str) – The name of the changed m2m field.

• kwargs – Field overrides for the LogEntry object.

Returns
The new log entry or None if there were no changes.

Return type
LogEntry

1.4.2 Middleware

class auditlog.middleware.AuditlogMiddleware(get_response=None)
Middleware to couple the request’s user to log items. This is accomplished by currying the signal receiver with
the user from the request (or None if the user is not authenticated).

1.4.3 Correlation ID

auditlog.cid.get_cid()→ str | None
Calls the cid getter function based on settings.AUDITLOG_CID_GETTER

If the setting value is:

• None: then it calls the default getter (which retrieves the value set in set_cid)

• callable: then it calls the function

• type(str): then it imports the function and then call it

14 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

The result is then returned to the caller.

If your custom getter does not depend on set_header(), then we recommend setting set-
tings.AUDITLOG_CID_GETTER to None.

Returns
The correlation ID

auditlog.cid.set_cid(request: HttpRequest | None = None)→ None
A function to read the cid from a request. If the header is not in the request, then we set it to None.

Note: we look for the value of AUDITLOG_CID_HEADER in request.headers and in request.META.

This function doesn’t do anything if the user is supplying their own AUDITLOG_CID_GETTER.

Parameters
request – The request to get the cid from.

Returns
None

1.4.4 Signal receivers

auditlog.receivers.check_disable(signal_handler)
Decorator that passes along disabled in kwargs if any of the following is true: - ‘auditlog_disabled’ from thread-
local is true - raw = True and AUDITLOG_DISABLE_ON_RAW_SAVE is True

auditlog.receivers.log_access(sender, instance, **kwargs)
Signal receiver that creates a log entry when a model instance is accessed in a AccessLogDetailView.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.log_create(sender, instance, created, **kwargs)
Signal receiver that creates a log entry when a model instance is first saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.log_delete(sender, instance, **kwargs)
Signal receiver that creates a log entry when a model instance is deleted from the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.log_update(sender, instance, **kwargs)
Signal receiver that creates a log entry when a model instance is changed and saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.make_log_m2m_changes(field_name)
Return a handler for m2m_changed with field_name enclosed.

1.4. Internals 15

django-auditlog, Release 3.0.0.post1+gb768dc7

1.4.5 Custom Signals

Django Auditlog provides two custom signals that will hook in before and after any Auditlog record is written from a
create, update, delete, or accessed action on an audited model.

auditlog.signals.pre_log = <django.dispatch.dispatcher.Signal object>

Whenever an audit log entry is written, this signal is sent before writing the log. Keyword arguments sent with
this signal:

Parameters

• sender (class) – The model class that’s being audited.

• instance (Any) – The actual instance that’s being audited.

• action (Action) – The action on the model resulting in an audit log entry. Type:
auditlog.models.LogEntry.Action

The receivers’ return values are sent to any post_log() signal receivers, with one exception: if any receiver
returns False, no logging will be made. This can be useful if logging should be conditionally enabled / disabled

auditlog.signals.post_log = <django.dispatch.dispatcher.Signal object>

Whenever an audit log entry is written, this signal is sent after writing the log. This signal is also fired when
there is an error in creating the log.

Keyword arguments sent with this signal:

Parameters

• sender (class) – The model class that’s being audited.

• instance (Any) – The actual instance that’s being audited.

• action (Action) – The action on the model resulting in an audit log entry. Type:
auditlog.models.LogEntry.Action

• changes (Optional[dict]) – The changes that were logged. If there was en error while
determining the changes, this will be None. In some cases, such as when logging access to
the instance, the changes will be an empty dict.

• log_entry (Optional[LogEntry]) – The log entry that was created and stored in the
database. If there was an error, this will be None.

• log_created (bool) – Was the log actually created? This could be false if there was an
error in creating the log.

• error (Optional[Exception]) – The error, if one occurred while saving the audit log
entry. None, otherwise

• pre_log_results (List[Tuple[method,Any]]) – List of tuple pairs
[(pre_log_receiver, pre_log_response)], where pre_log_receiver is the
receiver method, and pre_log_response is the corresponding response of that method.
If there are no pre_log receivers, then the list will be empty. pre_log_receiver is
guaranteed to be non-null, but pre_log_response may be None. This depends on the
corresponding pre_log_receiver’s return value.

New in version 3.0.0.

16 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

1.4.6 Calculating changes

auditlog.diff.get_field_value(obj, field)
Gets the value of a given model instance field.

Parameters

• obj (Model) – The model instance.

• field (Any) – The field you want to find the value of.

Returns
The value of the field as a string.

Return type
str

auditlog.diff.get_fields_in_model(instance)
Returns the list of fields in the given model instance. Checks whether to use the official _meta API or use the
raw data. This method excludes many to many fields.

Parameters
instance (Model) – The model instance to get the fields for

Returns
The list of fields for the given model (instance)

Return type
list

auditlog.diff.mask_str(value: str)→ str
Masks the first half of the input string to remove sensitive data.

Parameters
value (str) – The value to mask.

Returns
The masked version of the string.

Return type
str

auditlog.diff.model_instance_diff(old: Model | None, new: Model | None, fields_to_check=None)
Calculates the differences between two model instances. One of the instances may be None (i.e., a newly created
model or deleted model). This will cause all fields with a value to have changed (from None).

Parameters

• old (Model) – The old state of the model instance.

• new (Model) – The new state of the model instance.

• fields_to_check (Iterable) – An iterable of the field names to restrict the diff to, while
ignoring the rest of the model’s fields. This is used to pass the update_fields kwarg from the
model’s save method.

Returns
A dictionary with the names of the changed fields as keys and a two tuple of the old and new field
values as value.

Return type
dict

1.4. Internals 17

django-auditlog, Release 3.0.0.post1+gb768dc7

auditlog.diff.track_field(field)
Returns whether the given field should be tracked by Auditlog.

Untracked fields are many-to-many relations and relations to the Auditlog LogEntry model.

Parameters
field (Field) – The field to check.

Returns
Whether the given field should be tracked.

Return type
bool

1.4.7 Registry

exception auditlog.registry.AuditLogRegistrationError

class auditlog.registry.AuditlogModelRegistry(create: bool = True, update: bool = True, delete: bool =
True, access: bool = True, m2m: bool = True, custom:
Dict[ModelSignal, Callable] | None = None)

A registry that keeps track of the models that use Auditlog to track changes.

contains(model: ModelBase)→ bool
Check if a model is registered with auditlog.

Parameters
model – The model to check.

Returns
Whether the model has been registered.

Return type
bool

register(model: ModelBase = None, include_fields: List[str] | None = None, exclude_fields: List[str] |
None = None, mapping_fields: Dict[str, str] | None = None, mask_fields: List[str] | None = None,
m2m_fields: Collection[str] | None = None, serialize_data: bool = False, serialize_kwargs:
Dict[str, Any] | None = None, serialize_auditlog_fields_only: bool = False)

Register a model with auditlog. Auditlog will then track mutations on this model’s instances.

Parameters

• model – The model to register.

• include_fields – The fields to include. Implicitly excludes all other fields.

• exclude_fields – The fields to exclude. Overrides the fields to include.

• mapping_fields – Mapping from field names to strings in diff.

• mask_fields – The fields to mask for sensitive info.

• m2m_fields – The fields to handle as many to many.

• serialize_data – Option to include a dictionary of the objects state in the auditlog.

• serialize_kwargs – Optional kwargs to pass to Django serializer

• serialize_auditlog_fields_only – Only fields being considered in changes will be
serialized.

18 Chapter 1. Contents

django-auditlog, Release 3.0.0.post1+gb768dc7

register_from_settings()

Register models from settings variables

unregister(model: ModelBase)→ None
Unregister a model with auditlog. This will not affect the database.

Parameters
model – The model to unregister.

1.4. Internals 19

django-auditlog, Release 3.0.0.post1+gb768dc7

20 Chapter 1. Contents

CHAPTER

TWO

CONTRIBUTE TO AUDITLOG

If you discovered a bug or want to improve the code, please submit an issue and/or pull request via GitHub. Before
submitting a new issue, please make sure there is no issue submitted that involves the same problem.

GitHub repository: https://github.com/jazzband/django-auditlog
Issues: https://github.com/jazzband/django-auditlog/issues

21

https://github.com/jazzband/django-auditlog
https://github.com/jazzband/django-auditlog/issues

django-auditlog, Release 3.0.0.post1+gb768dc7

22 Chapter 2. Contribute to Auditlog

PYTHON MODULE INDEX

a
auditlog.cid, 14
auditlog.diff, 17
auditlog.middleware, 14
auditlog.models, 12
auditlog.receivers, 15
auditlog.registry, 18
auditlog.signals, 16

23

django-auditlog, Release 3.0.0.post1+gb768dc7

24 Python Module Index

INDEX

A
auditlog.cid

module, 14
auditlog.diff

module, 17
auditlog.middleware

module, 14
auditlog.models

module, 12
auditlog.receivers

module, 15
auditlog.registry

module, 18
auditlog.signals

module, 16
AuditlogHistoryField (class in auditlog.models), 12
AuditlogMiddleware (class in auditlog.middleware),

14
AuditlogModelRegistry (class in auditlog.registry),

18
AuditLogRegistrationError, 18

B
bulk_related_objects() (audit-

log.models.AuditlogHistoryField method),
12

C
changes_dict (auditlog.models.LogEntry property), 12
changes_display_dict (auditlog.models.LogEntry

property), 13
changes_str (auditlog.models.LogEntry property), 13
check_disable() (in module auditlog.receivers), 15
contains() (auditlog.registry.AuditlogModelRegistry

method), 18

G
get_cid() (in module auditlog.cid), 14
get_field_value() (in module auditlog.diff), 17
get_fields_in_model() (in module auditlog.diff), 17
get_for_model() (auditlog.models.LogEntryManager

method), 13

get_for_object() (audit-
log.models.LogEntryManager method), 13

get_for_objects() (audit-
log.models.LogEntryManager method), 13

L
log_access() (in module auditlog.receivers), 15
log_create() (auditlog.models.LogEntryManager

method), 14
log_create() (in module auditlog.receivers), 15
log_delete() (in module auditlog.receivers), 15
log_m2m_changes() (audit-

log.models.LogEntryManager method), 14
log_update() (in module auditlog.receivers), 15
LogEntry (class in auditlog.models), 12
LogEntry.Action (class in auditlog.models), 12
LogEntry.DoesNotExist, 12
LogEntry.MultipleObjectsReturned, 12
LogEntryManager (class in auditlog.models), 13

M
make_log_m2m_changes() (in module audit-

log.receivers), 15
mask_str() (in module auditlog.diff), 17
model_instance_diff() (in module auditlog.diff), 17
module

auditlog.cid, 14
auditlog.diff, 17
auditlog.middleware, 14
auditlog.models, 12
auditlog.receivers, 15
auditlog.registry, 18
auditlog.signals, 16

P
post_log (in module auditlog.signals), 16
pre_log (in module auditlog.signals), 16

R
register() (auditlog.registry.AuditlogModelRegistry

method), 18

25

django-auditlog, Release 3.0.0.post1+gb768dc7

register_from_settings() (audit-
log.registry.AuditlogModelRegistry method),
18

S
set_cid() (in module auditlog.cid), 15

T
track_field() (in module auditlog.diff), 17

U
unregister() (auditlog.registry.AuditlogModelRegistry

method), 19

26 Index

	Contents
	Installation
	Adding Auditlog to your Django application

	Usage
	Manually logging changes
	Automatically logging changes
	Correlation ID
	Settings
	Actors
	Middleware

	Context managers
	Set actor
	Disable auditlog

	Object history
	Many-to-many relationships
	Management commands
	Django Admin integration

	Upgrading to version 3
	Internals
	Models and fields
	Middleware
	Correlation ID
	Signal receivers
	Custom Signals
	Calculating changes
	Registry

	Contribute to Auditlog
	Python Module Index
	Index

